A Model Reduction Method for Multiscale Elliptic Pdes with Random Coefficients Using an Optimization Approach

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multiscale Data-Driven Stochastic Method for Elliptic PDEs with Random Coefficients

In this paper, we propose a multiscale data-driven stochastic method (MsDSM) to study stochastic partial differential equations (SPDEs) in the multiquery setting. This method combines the advantages of the recently developed multiscale model reduction method [M. L. Ci, T. Y. Hou, and Z. Shi, ESAIM Math. Model. Numer. Anal., 48 (2014), pp. 449–474] and the datadriven stochastic method (DSM) [M. ...

متن کامل

Cluster-based Generalized Multiscale Finite Element Method for elliptic PDEs with random coefficients

We propose a generalized multiscale finite element method (GMsFEM) based on clustering algorithm to study the elliptic PDEs with random coefficients in the multiquery setting. Our method consists of offline and online stages. In the offline stage, we construct a small number of reduced basis functions within each coarse grid block, which can then be used to approximate the multiscale finite ele...

متن کامل

A qMC-spectral method for elliptic PDEs with random coefficients on the unit sphere

We present a quasi-Monte Carlo spectral method for a class of elliptic partial differential equations (PDEs) with random coefficients defined on the unit sphere. The random coefficients are parametrised by the Karhunen-Loève expansion, while the exact solution is approximated by the spherical harmonics. The expectation of the solution is approximated by a quasi-Monte Carlo integration rule. A m...

متن کامل

A Data-Driven Stochastic Method for Elliptic PDEs with Random Coefficients∗

We propose a data-driven stochastic method (DSM) to study stochastic partial differential equations (SPDEs) in the multiquery setting. An essential ingredient of the proposed method is to construct a data-driven stochastic basis under which the stochastic solutions to the SPDEs enjoy a compact representation for a broad range of forcing functions and/or boundary conditions. Our method consists ...

متن کامل

Robust Optimization of PDEs with Random Coefficients Using a Multilevel Monte Carlo Method

This paper addresses optimization problems constrained by partial differential equations with uncertain coefficients. In particular, the robust control problem and the average control problem are considered for a tracking type cost functional with an additional penalty on the variance of the state. The expressions for the gradient and Hessian corresponding to either problem contain expected val...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Multiscale Modeling & Simulation

سال: 2019

ISSN: 1540-3459,1540-3467

DOI: 10.1137/18m1205844